If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+78x-216=0
a = 1; b = 78; c = -216;
Δ = b2-4ac
Δ = 782-4·1·(-216)
Δ = 6948
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6948}=\sqrt{36*193}=\sqrt{36}*\sqrt{193}=6\sqrt{193}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-6\sqrt{193}}{2*1}=\frac{-78-6\sqrt{193}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+6\sqrt{193}}{2*1}=\frac{-78+6\sqrt{193}}{2} $
| 11(x+1)=44 | | 210-0.25x=360 | | -9q=-10q-4 | | 5p^2-5=2p | | 5h=3h+8 | | q/68=2 | | (2x+7)27=3 | | 5p×5p-5=2p | | 2x+727=3 | | r/45=3 | | 12x+5=24x+8 | | x/x^2+2x-15=0 | | n/8=72 | | 5t-5=15 | | 3(t+7)=-12 | | 9x+7+10=77+21 | | 3/4(x/3-2/5)=1/2 | | -2(x-1)=4(x-2) | | 12+2x=24–4x | | 10+8h=8h+16 | | -5q/6=10 | | 2^x-3=483 | | -2p/3=8 | | 5(3-x)=x-9 | | 4(x-7)=5x | | 50+0,75k=25+1,25k | | 38x+12=180 | | b/15=2/3 | | 24+2b=15+b | | 1/3k=80=1/2k=20 | | 12.b/15=2/3 | | 8b-40=50+3b |